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OBJECTIVES The aim of this study was to develop and validate a device-based diagnostic algorithm to predict heart

failure (HF) events.

BACKGROUND HF involves costly hospitalizations with adverse impact on patient outcomes. The authors hypothesized

that an algorithm combining a diverse set of implanted device-based sensors chosen to target HF pathophysiology could

detect worsening HF.

METHODS The MultiSENSE (Multisensor Chronic Evaluation in Ambulatory Heart Failure Patients) study enrolled patients

with investigational chronic ambulatory data collection via implanted cardiac resynchronization therapy defibrillators. HF

events (HFEs), defined as HF admissions or unscheduled visits with intravenous treatment, were independently adjudicated.

Thedevelopmentcohort ofpatientswasused toconstruct a composite index andalert algorithm(HeartLogic) combiningheart

sounds, respiration, thoracic impedance, heart rate, and activity; the test cohort was sequestered for independent validation.

The 2 coprimary endpoints were sensitivity to detect HFE >40% and unexplained alert rate <2 alerts per patient-year.

RESULTS Overall, 900 patients (development cohort, n ¼ 500; test cohort, n ¼ 400) were followed for up to

1 year. Coprimary endpoints were evaluated using 320 patient-years of follow-up data and 50 HFEs in the test cohort

(72% men; mean age 66.8 � 10.3 years; New York Heart Association functional class at enrollment: 69% in class II, 25%

in class III; mean left ventricular ejection fraction 30.0 � 11.4%). Both endpoints were significantly exceeded, with

sensitivity of 70% (95% confidence interval [CI]: 55.4% to 82.1%) and an unexplained alert rate of 1.47 per patient-year

(95% CI: 1.32 to 1.65). The median lead time before HFE was 34.0 days (interquartile range: 19.0 to 66.3 days).

CONCLUSIONS The HeartLogic multisensor index and alert algorithm provides a sensitive and timely predictor of

impending HF decompensation. (Evaluation of Multisensor Data in Heart Failure Patients With Implanted Devices

[MultiSENSE]; NCT01128166) (J Am Coll Cardiol HF 2017;5:216–25) © 2017 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

CI = confidence interval

CRT-D = cardiac

resynchronization therapy

defibrillator

FPR = false-positive rate

HF = heart failure

HFE = heart failure event

IV = intravenous

PG = performance goal

PPV = positive predictive value

SRD = sensor research device
H ospitalizations are common in patients
with heart failure (HF) (1) and are associ-
ated with high mortality, readmission,

and economic burden. In the United States alone,
there are more than 1 million hospitalizations for
HF, with a direct cost of more than $20 billion attrib-
uted primarily to inpatient costs (1). Although moni-
toring weights and symptoms is recommended for
managing HF (2), this has not proved to reduce hospi-
talizations (3). Given the economic and clinical
impact of HF hospitalizations, there is a need for an
effective method to detect worsening HF early
enough to provide an opportunity for timely
intervention.
SEE PAGE 226
UAR = unexplained alert rate
A variety of sensors in implantable devices
(implantable cardioverter-defibrillators, cardiac
resynchronization therapy devices, and pacemakers)
may indicate early changes before hospitalizations
(4,5). Yet clinical trials using implanted devices have
not consistently shown reductions in HF hospitali-
zations (6–8). Although the underlying causes are
likely multifactorial, 1 reason could be the use of
single sensors to try to predict outcomes in a complex
clinical syndrome (9–11). We sought to develop an
algorithm for the early detection of worsening HF by
combining a diverse set of implanted sensors. These
sensors target the different aspects of HF patho-
physiology associated with common signs and
symptoms of HF. We then sought to prospectively
test the resultant algorithm against pre-defined and
clinically relevant performance goals (PGs) in an
independent test set.

METHODS

The MultiSENSE (Multisensor Chronic Evaluation in
Ambulatory Heart Failure Patients) study design was
previously published and is summarized in Online
Table 1 (12). In brief, MultiSENSE was an interna-
tional, multicenter, nonrandomized study designed
to determine how ambulatory sensor measurements
change with worsening HF. The intent was to develop
and prospectively evaluate a multisensor-based
algorithm for the early detection of worsening HF.
Patients were required to have an implanted COGNIS
cardiac resynchronization therapy defibrillator
(CRT-D, Boston Scientific, St. Paul, Minnesota) and
bipolar right atrial, right ventricular, and left ven-
tricular leads. Because of slow enrollment, after the
first 62 patients, the inclusion criterion of recent HF
therapy (at least 1 documented HF hospitalization
or outpatient visit requiring administration of
intravenous [IV] diuretic agents within the
past 6 months or 2 within the past 12 months)
was replaced with an inclusion criterion of
New York Heart Association functional class
II, III, or IV within the past 6 months. A cor-
responding adjustment was made to the trial
sample size to account for the lower expected
rate of heart failure events (HFEs). A full list
of inclusion criteria can be found in Online
Table 1. All patients provided written
informed consent.

SENSOR DATA COLLECTION. Upon enroll-
ment, new software was downloaded into the
implanted CRT-D, converting it to an inves-
tigational sensor research device (SRD). SRD

conversion enabled data collection from sensors,
including heart rate, accelerometer-based heart
sounds, respiration rate, relative tidal volume, activ-
ity, and intrathoracic impedance. Sensor data were
downloaded either during follow-up visits or using
remote LATITUDE transmissions. Treating clinicians
and investigators were blinded to the investigational
sensor data. The study data were divided into 2 sets
by order of enrollment. The development set was
used to develop the composite index and alert algo-
rithm. The test set was sequestered and used for in-
dependent validation of alert algorithm performance.
The inclusion criteria change occurred during devel-
opment set enrollment. Devices were restored to
market-approved CRT-Ds following a 12-month visit.

HEART FAILURE EVENTS. An independent clinical
events committee reviewed all hospitalizations and
outpatient visits with any IV treatments or
augmented oral HF therapies (12). The committee
members were blinded to all sensor and algorithm
data. An event was classified as an HFE if the primary
cause was worsening HF and either of the following
conditions was met: 1) the patient was admitted and
incurred a calendar date change; or 2) the patient
received 1 or more IV medications (including diuretic
agents, inotropes, and vasodilators), aquapheresis, or
other parenteral therapy. HFEs were considered “us-
able,” for algorithm development and validation, if
they occurred at least 45 days after the initiation of
sensor data collection and before device reconver-
sion. The 45-day period was required to establish a
sensor baseline. Missed study visits resulted in SRD
memory overflow, hence data availability criteria
were established (Online Appendix).

MULTISENSOR ALERT ALGORITHM. The algorithm
was developed using sensor data and HFE information
from the development set. During the first phase of
algorithm development, features that demonstrated

http://dx.doi.org/10.1016/j.jchf.2016.12.011
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TABLE 1 Physiological Variables and Their Clinical Relevance

Physiological Variable Clinical Relevance

Heart sounds

First heart sound Associated with ventricular contraction
status

Third heart sound Associated with early diastolic filling

Thoracic impedance Associated with fluid accumulation and
pulmonary edema

Respiration

Respiration rate Rapid shallow breathing patterns
associated with shortness of breath

Ratio of respiration rate to
tidal volume

Heart rate Indicator of cardiac status

Activity Global patient status and fatigue
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meaningful association with HFEs were extracted
from individual sensor data into feature trends.
Each feature trend was independently assessed on the
basis of signal changes during pre-HFE and nonevent
time periods. The next phase of development included
combining the key feature trends into a composite in-
dex and an associated alert (HeartLogic). In brief,
multiple feature changes from the patient’s own
baseline were aggregated and weighted on the basis of
an individual daily risk for worsening HF assessment.
The algorithm uses the first and third heart sounds,
thoracic impedance, respiration rate, the ratio of
respiration rate to tidal volume, heart rate, and patient
activity. The clinical relevance of thesemetrics to HF is
summarized in Table 1.

The HeartLogic index value is updated daily, and
an alert is issued when the index crosses an alert
threshold. The nominal alert threshold of 16 and the
coprimary endpoints described later were pre-
specified on the basis of the development set. The
algorithm development team was blinded to the test
set data until algorithm validation.

STATISTICAL ANALYSIS: PRE-SPECIFIED ENDPOINT

DEFINITIONS. The coprimary endpoints used to
validate the algorithm were pre-specified as follows
before assessing the sequestered data from the test
set using SAS version 9.2 (SAS Institute, Cary, North
Carolina):

� Endpoint 1: Sensitivity for detecting usable HFE
>40%. An exact 2-sided 95% (i.e., a ¼ 0.025) con-
fidence interval (CI) for sensitivity was calculated
on the basis of the binomial distribution, and the
lower bound was tested against a PG of 40%.

� Endpoint 2: Unexplained alert rate (UAR) per
patient-year <2.0. A 2-sided 95% CI for the UAR
was calculated on the basis of the negative bino-
mial distribution, and the upper bound was tested
against the PG of 2.0.

Alerts were classified as true-positive if the alert
onset occurred before a usable HFE that met the data
availability criteria (and did not reset earlier than 30
days before the event). Similarly, HF-related alerts
followed the same timing criteria but preceded HFEs
meeting a broader definition (excluding the HFE
definition). These included events such as HF admis-
sions with a secondary cause of HF or oral HF therapy
in an outpatient setting, as well as events that did not
meet data availability criteria or that occurred within
45 days of device conversion. All remaining alerts
were classified as unexplained alerts. Sensitivity was
defined as the ratio of total number of detected usable
HFEs to the total number of usable HFEs. UAR was
defined as the ratio of the total number of unexplained
alerts over the total usable follow-up duration (i.e.,
the total duration of patient-years when the index had
valid values).

A study of 400 patients with an estimated 329
patient-years of total usable follow-up was projected
to provide 40 HFEs meeting the usability criteria.
With an expected sensitivity of 65%, it would provide
88% power for the sensitivity PG. With an expected
UAR of 1.63 per patient-year, it would provide 80%
power for the UAR PG. Assuming independence, the
combined power was 71%. The targeted performance
would represent real clinical benefit, with a low alert
management burden, even if only a fraction of alerts
prevented a hospitalization.

POST HOC ANALYSIS. Additionally, false-positive
rate (FPR), positive predictive value (PPV), speci-
ficity, and negative predictive value were also
computed. FPR was defined as the ratio of the total
number of alerts that were not true-positive
alerts over the total usable follow-up duration. PPV,
defined as the proportion of alerts that were positively
associated with HFEs, was separately calculated using
both the ratio of HF-related alerts to total alert count,
as well as the more restrictive definition of the ratio of
true-positive alerts to total alert count. Specificity was
calculated as true negative/(true negative þ false
positive) during non-HFE time periods (i.e., excluding
periods from 30 days before to 15 days after an HFE).
Individual days were classified as true negative if
HeartLogic was not in alert state and false positive if
HeartLogic was in alert state.

RESULTS

PATIENT DEMOGRAPHICS. There were 974 patients
enrolled at 81 centers (64 U.S., 17 international) be-
tween July 2010 and October 2013, with last study



FIGURE 1 Study Flowchart

All available sensor data and heart failure event data from withdrawn and deceased patients were included in the development and test sets.

OOS ¼ out of service; SRD ¼ sensor research devices.
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follow-up in December 2014 and event adjudication
completed in May 2015. The first 491 patients enrolled
in the U.S. and the first 40 international patients were
assigned to the development set, and the remainder
of the U.S. (n ¼ 362) and international (n ¼ 81) pa-
tients were assigned to the test set (Figure 1). Baseline
characteristics of each group are summarized in
Table 2. There were significant differences between
groups in the percentage of international patients,
blood pressures, blood chemistry (sodium, hemato-
crit, and blood urea nitrogen), and medications
(anticoagulant agents and aldosterone antagonists).

DEVELOPMENT SET CHARACTERIZATION AND

OPERATING POINT SELECTION. Five hundred pa-
tients assigned to the development set completed
SRD conversion (Online Table 2), of whom 468
(93.6%) completed the 12-month data collection
(median SRD follow-up time 324 days; range 7 to 395
days) (Figure 1). Twenty-four patients (4.8%) in the
development set died during follow-up. A total of 64
patients (12.8%) in the development set had 127 HFEs
during follow-up (96 usable HFEs) (Online Figure 1).
The detection performance in the development set is
presented in Figure 2A. At the nominal threshold of
16, the observed sensitivity was 82%, and the UAR
was 1.33 per patient-year. Exclusion of the 62 patients
enrolled before inclusion criteria change did not
substantially change the observed sensitivity (82%) or
UAR (1.29).

INDEPENDENT TEST SET CHARACTERIZATION. Four
hundred patients in the test set completed SRD
conversion, and 385 (96.2%) completed the 12-month
data collection (median SRD follow-up time 322
days; range 18 to 357 days) (Figure 1). Thirteen pa-
tients (3.3%) in the test set died during follow-up
(p ¼ 0.31 vs. development set). One patient in the
test set died before SRD conversion. A total of 42
patients (10.5%) in the test set had 65 HFEs during
follow-up (p ¼ 0.30 vs. development set). Fifty of
these events met the usability criteria (Figure 3).
Ninety-two additional events were classified as
HF-related. These included 51 outpatient visits
associated with significant oral HF medication
changes, 26 events with HF as secondary cause, 8
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TABLE 2 Patient Characteristics

Measurement
Development Set

(n ¼ 531)
Test Set
(n ¼ 443) p Value

Age at implantation (yrs) Mean � SD 66.3 � 10.9 66.8 � 10.3 0.51

Sex Male 387 (73) 314 (71) 0.50

Race White, not of
Hispanic origin

367 (75) 285 (79) 0.31

United States Yes 491 (92) 362 (82%) <0.0001

History of cardiac
ischemia

Yes 277 (52) 217 (49) 0.31

History of dilated
cardiomyopathy

Yes 301 (57) 271 (61) 0.16

History of valvular
disease

Yes 162 (31) 130 (29) 0.68

History of valve surgery Yes 50 (9) 40 (9) 0.83

Previous MI Yes 211 (40) 171 (39) 0.69

Previous CABG Yes 156 (29) 128 (29) 0.87

Primary atrial arrhythmia Atrial fibrillation 136 (26) 118 (27) 0.88

Renal disease Yes 143 (27) 101 (23) 0.13

NYHA functional class I/II/III/IV 5%/64%/27%/0% 4%/64%/25%/1% 0.30

LVEF (%) Mean � SD 29.3 � 11.5 29.7 � 11.4 0.63

Body mass index (kg/m2) Mean � SD 30.2 � 6.7 30.5 � 6.9 0.48

Systolic blood pressure
(mm Hg)

Mean � SD 121 � 19 125 � 19 0.009

Diastolic blood pressure
(mm Hg)

Mean � SD 71 � 11 73 � 11 0.02

Resting heart rate
(beats/min)

Mean � SD 71 � 10 71 � 10 0.72

Resting respiratory rate
(breaths/min)

Mean � SD 18 � 6 18 � 7 0.45

Sodium (mEq/l) Mean � SD 139 � 3 140 � 3 0.03

Potassium (mEq/l) Mean � SD 4.4 � 0.6 4.4 � 0.5 1.00

Hematocrit (%) Mean � SD 39.3 � 4.8 40.3 � 5.0 0.004

Total hemoglobin (g/dl) Mean � SD 13.1 � 1.7 13.3 � 1.8 0.05

Total plasmaprotein (g/dl) Mean � SD 7.1 � 0.7 7.1 � 0.6 0.58

BUN (mg/dl) Mean � SD 25.0 � 13.7 23.1 � 11.3 0.04

Urea (mmol/l) Mean � SD 5.6 � 2.7 6.5 � 1.8 0.09

Serum creatinine (mg/dl) Mean � SD 1.4 � 0.9 1.3 � 0.7 0.08

NT-proBNP (pg/ml) Mean � SD 2,142 � 5,290 1,576 � 3,023 0.07

Concomitant
medications

Anticoagulant
agents

462 (88) 356 (82) 0.005

Beta-blockers 490 (94) 405 (93) 0.70

Diuretic agents 399 (76) 340 (78) 0.50

ACE inhibitors þ
ARBs

436 (83) 354 (81) 0.42

Aldosterone
antagonist

196 (37) 193 (44) 0.03

Vasoactive drugs 123 (23) 102 (23) 0.98

Cardiac glycosides 139 (27) 107 (25) 0.48

Antiarrhythmic
medications

113 (22) 97 (22) 0.80

Calcium-channel
blockers

42 (8) 31 (7) 0.60

Values are mean � SD or n (%).

ACE ¼ angiotensin-converting enzyme; ARB ¼ angiotensin receptor blocker; BUN ¼ blood urea nitrogen;
CABG ¼ coronary artery bypass grafting; LVEF ¼ left ventricular ejection fraction; MI ¼ myocardial infarction;
NT-proBNP ¼ N-terminal pro–B-type natriuretic peptide; NYHA ¼ New York Heart Association.
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events that happened within 45 days of device
conversion, and 7 events that did not meet the data
availability criteria. All events not meeting the data
availability criteria were due to missed study visits
or data uploads.

ALGORITHM VALIDATION PERFORMANCE TESTING. At
the nominal alert threshold of 16, the observed
sensitivity was 70%. The exact 2-sided 95% CI was
55.4% to 82.1%, which exceeded the pre-specified
PG of 40%. The median time from alert onset to
HFEs was 34.0 days (interquartile range: 19.0 to 66.3
days). Sixty-three percent (22 of 35) had alert onsets
at least 4 weeks, 74% (26 of 35) at least 3 weeks,
and 89% (31 of 35) at least 2 weeks before the
corresponding HFEs. Observed UAR associated with
the nominal threshold was 1.47 alerts per patient-
year. A negative binomial model estimated a 2-sided
95% CI of 1.32 to 1.65, lower than the pre-specified
PG of 2.0. Thus, both primary endpoints were met.
At the nominal threshold, the FPR was 1.56, with a
95% CI of 1.41 to 1.77, specificity was 85.7%, and
negative predictive value was 99.98%. The PPV for
HF-related alerts was 11.3%. Limiting the definition
to only true positive alerts resulted in a PPV of 5.6%.

The algorithm performance across a range of
thresholds is plotted in Figure 2B. Five thresholds (14,
16, 18, 20, and 22) met the PG (sensitivity >40% and
UAR <2.0). For example, at a threshold of 18, sensi-
tivity was maintained at 70%, with a reduction in UAR
to 1.22, and further increasing the threshold to 22
reduced the UAR to 0.93 while still achieving sensi-
tivity of 60%.

Figure 4 compares the temporal profiles of the
HeartLogic index in patients with usable HFEs (blue),
aligned with respect to the date of HFEs (day 0), with
those without HFEs (black), aligned with respect to
the date of the last available HeartLogic index (day
30). Patients who had HFEs had a median HeartLogic
index of 8.6 (interquartile range: 2.5 to 16.4) over a
3-month baseline period ending 90 days before the
HFEs. The index increased from this baseline value,
becoming statistically significant 29 days before the
HFE (p < 0.05, rank sum test), and decreased toward
baseline following the event. In contrast, the Heart-
Logic index for those patients without HFEs was
significantly lower (median 2.9; interquartile range:
0.1 to 7.7) than the baseline for patients with HFEs
(p < 0.001; rank sum test) and remained stable over
the entire duration.
DISCUSSION

In the MultiSENSE trial, the HeartLogic algorithm
demonstrated the capability to alert clinicians before
the majority of HFEs (defined as hospitalizations or
outpatient visits with IV therapies with HF as the



FIGURE 2 Modified Receiver Operating Characteristic Curves Showing the Sensitivity Versus Unexplained Alert Rate for the HeartLogic Index

A B

(A) Development Set. (B) Test Set. Each point corresponds to an alert threshold. The shaded regions represent the 95% confidence interval (CI) of the mean.

The red lines indicate the pre-specified performance goals.
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primary diagnosis). The algorithm was designed to
detect gradual worsening of HF over days or weeks
and had sensitivity of 70% with a median alert win-
dow of 34 days before the HFEs and a UAR of 1.47
per patient-year at the nominal threshold in the
independent validation.

The prompting of clinical evaluation of patients
with the HeartLogic alert is intended to identify
worsening HF that otherwise would be undetected
until signs or symptoms are prominent enough to
warrant hospitalization or invasive treatment.
Indeed, all of the HFEs that occurred in the trial
were not mitigated by standard-of-care practice.
This underscores the existing clinical need and op-
portunity for improvement. In this context, the
ability to detect any event has the potential to
benefit patient care.

Because a substantial number of patients with HF
have implantable devices that can monitor physio-
logical parameters, a number of studies have evalu-
ated the merit of this type of monitoring (5). The
most widely studied single parameter to date is
intrathoracic impedance (4,6,8,9). In MIDHeFT
(Medtronic Impedance Diagnostics in Heart Failure
Trial) (4) and FAST (Fluid Accumulation Status Trial)
(13), the OptiVol fluid index had sensitivity of 76% at
an FPR of 1.5 to 1.9 per patient-year in small cohorts
(33 and 156, respectively); however, a subsequent
study (SENSE-HF [Sensitivity of the InSync Sentry
OptiVol Feature for the Prediction of Heart Failure])
of 501 subjects reported sensitivity of only 20.7%,
with a PPV of 4.7% in the blinded validation phase
(9). A post hoc analysis using the same sensitivity
definition as this study resulted in sensitivity of
29.3% in the blinded phase (9). Similarly, the CorVue
algorithm evaluated in the DEFEAT-PE (Detect Fluid
Early From Intrathoracic Impedance Monitoring)
study reported low sensitivity of 21.6% at an FPR of
0.9 per patient-year (10).

There have been other attempts to use implanted
devices to detect worsening HF by using multiple
parameters. The CLEPSYDRA (Clinical Evaluation of
the Physiological Diagnosis Function in the PARA-
DYM CRT Device) study evaluated the physiological
diagnosis feature based on minute ventilation and
activity but showed sensitivity of only 34% at an FPR
of 2.4 per patient-year (11).

On the basis of these studies, we hypothesized that
an algorithm combining multiple physiological sen-
sors that evaluate different aspects of HF physiology
would be superior to monitoring a single sensor. In
MultiSENSE, HeartLogic had superior sensitivity of
70% at the nominal threshold. The parameters used
to create the multisensor algorithm are well estab-
lished, including vital signs such as heart rate and
respiratory rate, indexing relative tidal volume to
respiratory rate (i.e., rapid shallow breathing index or
dyspnea index), a measurement of the third and first
heart sounds, and activity. The fact that these pa-
rameters are objective measures of the underlying
pathophysiology associated with signs and symptoms
of worsening HF may have contributed to the



FIGURE 3 Event Classification in the Test Set

HFE ¼ heart failure event; IV ¼ intravenous.
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higher sensitivity observed in the independent
validation.

The algorithm had a UAR of 1.47 per patient-year
at the nominal threshold. We used the definition
of UAR instead of the traditional FPR in assessing
the alert performance because of the complex and
heterogeneous nature of HF. Although HFEs were
defined as hospitalization or outpatient visits with IV
therapies with HF as the primary cause, patients may
experience varying degrees of worsening HF that
include treatment with different levels of interven-
tion. Although clinicians in MultiSENSE were blinded
to sensor and algorithm data, the patients in the study
were being managed for HF following standard of
care. This means that some occurrences of worsening
HF were caught by clinicians and corrective therapies
were delivered (e.g., oral medication changes) that
may have mitigated more severe events. Alerts that
were associated with corrective HF therapy but
did not meet the HFE usability criteria were consid-
ered HF-related alerts. These HF-related alerts
appropriately detected the patients’ HF decline
and are consistent with intended algorithm behavior
and use.

The HeartLogic algorithm alerted a median of
34 days before HFEs, providing enough time for
corrective action to be taken. This is critically
important, as the goal is to identify patients in
order to enact treatment to prevent the event.
Because of the high impact of HF on health care



FIGURE 4 Temporal Profile of HeartLogic Index Trends in Patients With and Without

Heart Failure Events

Data are displayed as mean � SEM. The shaded regions represent the SEM. HeartLogic

index in patients with usable HFE (blue line) aligned by the date of the HFE (vertical

line) at Day 0; HeartLogic index in patients without HFE (black line) aligned by the last

available HeartLogic index date for each patient (Day 30). Days related to heart failure

events (HFEs) with the HeartLogic index are significantly greater (p < 0.05, rank sum

test) than a 3-month baseline period ending 90 days before the HFE are indicated by

asterisks.
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expenditures and significant impact on quality of life
(1), even relatively modest reductions in hospitaliza-
tions could have a significant benefit on overall dis-
ease burden. Furthermore, this benefit comes in the
context of regularly used devices and does not
introduce any added incremental implant or proced-
ure risks.

The nominal threshold specified for algorithm
validation represents 1 operating point intended to
optimize sensitivity at a relatively low UAR, but there
is wide variability in clinical perspective on what
constitutes an optimal balance between sensitivity
and UAR. The sensitivity and UAR performance
across a range of thresholds demonstrates the
potential to customize algorithm use to individual
patient or clinic preferences by adjusting the alert
threshold.

The PARTNERS-HF (Prospective Multicenter
Observational Study in Patients Receiving Cardiac
Resynchronization Therapy) study developed a com-
bined score on the basis of available device di-
agnostics, including impedance-based OptiVol fluid
index, duration in atrial fibrillation, patient activity,
device therapy (biventricular pacing or device shocks),
and abnormal autonomics (either increased heart rate
or reduced heart rate variability) (14). Unlike algo-
rithms that conduct daily evaluation for the detection
of worsening HF episodes, this analysis instead risk-
stratified patients into high-, medium-, and low-risk
groups on the basis of monthly evaluations, demon-
strating that the high-risk group had a >5-fold risk for
HF hospitalization compared with the low-risk group.
A Bayesian model, again developed for monthly eval-
uation, identified patients with a 10-fold higher risk for
hospitalization when comparing the high-risk group
with the low-risk group (15) but left nearly 40%
monthly evaluations in the middle group.

Recent work that used pulmonary artery pressure
monitoring closely coupled with medication changes
to control pressures showed sustained improvement
in HF hospitalizations (16–18). However, unlike
implantable device diagnostics, pressure-based
management requires a dedicated implant proced-
ure and relies on patient compliance for daily mea-
surement, as well as a support team to respond to
frequent alerts. The HeartLogic index, incorporated
into implanted cardiac devices, allows automated
daily evaluation of a patient’s HF status and early
awareness of impending decompensation with high
sensitivity. This, combined with the device’s daily
automatic remote monitoring, has the potential to
provide actionable care to a patient early in the
decompensation spectrum.
STUDY LIMITATIONS. The HeartLogic alert was
studied only in patients with CRT-Ds. However,
the sensors used in the algorithm are independent of
a left ventricular lead and could be incorporated
into an implantable cardioverter-defibrillator or
pacemaker.

To establish the algorithm in a timely fashion,
patients were separated in the development and test
set cohorts chronologically rather than in a random-
ized fashion. Because enrollment was not uniform at
all sites and there was a protocol modification early
in the study to increase enrollment, there were some
modest differences in the patient populations for the
development and test set cohorts. Although such a
process could generate a patient selection bias, it
would be more likely that such differences would
diminish the test set algorithm performance
(because it was generated from a dissimilar devel-
opment set), so in that sense, it strengthens the
validation results.

The ability of this study to both establish and test a
multisensor algorithm is based on the number of
events that could be evaluated. This study was
limited by a 1-year follow-up. Additionally, some
events were excluded because of inadequate data due



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: An

algorithm for the detection of impending heart failure

events was designed to mimic the analysis of a clini-

cian by combining multiple sensors for the evaluation

of different aspects of cardiac physiology. The

resulting composite index and alert (HeartLogic)

effectively detected 70% of worsening heart failure

events a median of 34 days before the event, with a

low rate of unexplained detections of <1.5 per pa-

tient-year in an independent test set.

TRANSLATIONAL OUTLOOK:When the algorithm

is incorporated into implantable cardioverter-defibril-

lators and CRT-Ds, and linked with automatic remote

monitoring, it will seamlessly evaluate a patient’s heart

failure status with no additional patient effort. The

prolonged warning time may then allow proactive in-

terventions and a decrease in heart failure hospitaliza-

tions. The next step is to evaluate clinical integration

strategies and demonstrate whether patient manage-

ment with the HeartLogic index and alert will lead to

improved outcomes for patients with heart failure.
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to noncompliance with the study follow-up schedule.
Despite these limitations, a total of 96 events in the
development set and 50 events in the test set were
available, which met our established study goals.

The ultimate goal of any HF alert is to provide an
opportunity to apply therapy to avoid morbid events
such as HF hospitalizations. This multisensor algo-
rithm has not been studied as a specific therapeutic
approach. Further investigation is intended to
determine whether managing patients to the Heart-
Logic index will lead to improved outcomes. How-
ever, the performance of the alert, in terms of
sensitivity to detect impending HFEs and UAR related
to HFEs, is encouraging.

CONCLUSIONS

In this study, a multisensor algorithm was established
using device-based sensors monitoring heart rate,
heart sounds, thoracic impedance, respiration, and
activity. The predictive sensitivity to HFEs was 70%,
with a median early warning of 34 days before the
event, balanced against an UAR of 1.47 per patient-
year. Additional alert thresholds provide options for
increased sensitivity or decreased UARs. Further
studies will be needed to establish whether this type
of HF alert can improve patient outcomes.

ACKNOWLEDGMENTS The authors acknowledge the
efforts of Robert Sweeney and John Hatlestad for
scientific guidance, Eric Hammill and Keith Herrmann
for manuscript editing, and Scott Wehrenberg for
statistical analysis. The authors acknowledge the
Clinical Event Committee and MultiSENSE in-
vestigators for their contribution to the study execu-
tion (Online Appendix).
ADDRESS FOR CORRESPONDENCE: Dr. John P.
Boehmer, Heart Failure Program, The Pennsylvania
State University College of Medicine, The Penn
State Hershey Medical Center, 500 University Drive,
H047, Hershey, Pennsylvania 17033. E-mail:
jboehmer@psu.edu.
RE F E RENCE S
1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart
disease and stroke statistics—2016 update: a
report from the American Heart Association.
Circulation 2016;133:e38–360.

2. Yancy CW, Jessup M, Bozkurt B, et al. 2013
ACCF/AHA guideline for the management of
heart failure: a report of the American College
of Cardiology Foundation/American Heart As-
sociation Task Force on Practice Guidelines.
J Am Coll Cardiol 2013;62:e147–239.

3. Chaudhry SI, Mattera JA, Curtis JP, et al. Tele-
monitoring in patients with heart failure. N Engl J
Med 2010;363:2301–9.

4. Yu CM, Wang L, Chau E, et al. Intrathoracic
impedance monitoring in patients with heart fail-
ure: correlation with fluid status and feasibility of
early warning preceding hospitalization. Circula-
tion 2005;112:841–8.
5. Samara MA, Tang WH. Device monitoring stra-
tegies in acute heart failure syndromes. Heart Fail
Rev 2011;16:491–502.

6. van Veldhuisen DJ, Braunschweig F,
Conraads V, et al. Intrathoracic impedance moni-
toring, audible patient alerts, and outcome in
patients with heart failure. Circulation 2011;124:
1719–26.

7. Hindricks G, Taborsky M, Glikson M, et al.
Implant-Based Multiparameter Telemonitoring of
Patients With Heart Failure (IN-TIME): a rando-
mised controlled trial. Lancet 2014;384:583–90.

8. BohmM, Drexler H, Oswald H, et al. Fluid status
telemedicine alerts for heart failure: a randomized
controlled trial. Eur Heart J 2016;37:3154–63.

9. Conraads VM, Tavazzi L, Santini M, et al.
Sensitivity and positive predictive value of
implantable intrathoracic impedance monitoring
as a predictor of heart failure hospitalizations: the
SENSE-HF trial. Eur Heart J 2011;32:2266–73.

10. Heist EK, Herre JM, Binkley PF, et al. Analysis
of different device-based intrathoracic impedance
vectors for detection of heart failure events (from
the Detect Fluid Early From Intrathoracic Imped-
ance Monitoring study). Am J Cardiol 2014;114:
1249–56.

11. Auricchio A, Gold MR, Brugada J, et al. Long-
term effectiveness of the combined minute venti-
lation and patient activity sensors as predictor of
heart failure events in patients treated with cardiac
resynchronization therapy: results of the Clinical
Evaluation of the Physiological Diagnosis Function
in the PARADYM CRT Device trial (CLEPSYDRA)
study. Eur J Heart Fail 2014;16:663–70.

12. Boehmer JP, Wariar R, Zhang Y, et al. Rationale
and design of the Multisensor Chronic Evaluations

http://dx.doi.org/10.1016/j.jchf.2016.12.011
mailto:jboehmer@psu.edu
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref1
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref1
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref1
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref1
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref2
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref2
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref2
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref2
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref2
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref2
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref3
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref3
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref3
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref4
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref4
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref4
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref4
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref4
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref5
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref5
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref5
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref6
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref6
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref6
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref6
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref6
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref7
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref7
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref7
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref7
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref8
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref8
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref8
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref9
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref9
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref9
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref9
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref9
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref10
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref10
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref10
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref10
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref10
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref10
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref11
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref12
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref12


J A C C : H E A R T F A I L U R E V O L . 5 , N O . 3 , 2 0 1 7 Boehmer et al.
M A R C H 2 0 1 7 : 2 1 6 – 2 5 A Multisensor Algorithm Predicts HF

225
in Ambulatory Heart Failure Patients (MultiSENSE)
study. J Innov Card Rhythm Manage 2015;6:
2137–43.

13. Abraham WT, Compton S, Haas G, et al.
Intrathoracic impedance vs daily weight moni-
toring for predicting worsening heart failure
events: results of the Fluid Accumulation Sta-
tus Trial (FAST). Congest Heart Fail 2011;17:
51–5.

14. Whellan DJ, Ousdigian KT, Al-Khatib SM, et al.
Combined heart failure device diagnostics identify
patients at higher risk of subsequent heart failure
hospitalizations: results from PARTNERS HF (Pro-
gram to Access and Review Trending Information
and Evaluate Correlation to Symptoms in Patients
With Heart Failure) study. J Am Coll Cardiol 2010;
55:1803–10.
15. Cowie MR, Sarkar S, Koehler J, et al. Devel-
opment and validation of an integrated diag-
nostic algorithm derived from parameters
monitored in implantable devices for identifying
patients at risk for heart failure hospitalization in
an ambulatory setting. Eur Heart J 2013;34:
2472–80.

16. Abraham WT, Adamson PB, Bourge RC, et al.
Wireless pulmonary artery haemodynamic monitoring
in chronic heart failure: a randomised controlled trial.
Lancet 2011;377:658–66.

17. Abraham WT, Stevenson LW, Bourge RC,
Lindenfeld JA, Bauman JG, Adamson PB. Sustained
efficacy of pulmonary artery pressure to guide
adjustment of chronic heart failure therapy: com-
plete follow-up results from the CHAMPION rand-
omised trial. Lancet 2016;387:453–61.
18. Loh JP, Barbash IM, Waksman R. Overview of
the 2011 Food and Drug Administration Circula-
tory System Devices Panel of the Medical Devices
Advisory Committee meeting on the CardioMEMS
Champion heart failure monitoring system. J Am
Coll Cardiol 2013;61:1571–6.
KEY WORDS cardiac devices, cardiac
resynchronization therapy, decompensation,
diagnostics, heart failure, remote
monitoring, sensors

APPENDIX For supplemental tables and a
figure, please see the online version of this
article.

http://refhub.elsevier.com/S2213-1779(17)30048-3/sref12
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref12
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref12
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref13
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref13
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref13
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref13
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref13
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref13
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref14
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref15
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref16
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref16
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref16
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref16
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref17
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref17
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref17
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref17
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref17
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref17
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref18
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref18
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref18
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref18
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref18
http://refhub.elsevier.com/S2213-1779(17)30048-3/sref18

	A Multisensor Algorithm Predicts Heart Failure Events in Patients With Implanted Devices
	Methods
	Sensor data collection
	Heart failure events
	Multisensor alert algorithm
	Statistical analysis: Pre-specified endpoint definitions
	Post hoc analysis

	Results
	Patient demographics
	Development set characterization and operating point selection
	Independent test set characterization
	Algorithm validation performance testing

	Discussion
	Study limitations

	Conclusions
	Acknowledgments
	References


